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______________________________________________________________________ 

Abstract: We present a new perturbation bound in an / /1M G  queueing system with breakdowns and 
repairs. Our analysis is based on bounding the distance of  stationary distributions in a suitable functional 
space. This leads to understand how the breakdowns of  the server will affect the system's level of  
performance. In order to give an idea about the application of  our approach in practice, we give a 
numerical example which would show the difference between explicit analytical estimates of  errors and 
real simulated errors. It also allows for evaluating the potential of  our approach. Eventually, we will point 
out directions of  further research. 
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1. Introduction 

et P  denote the transition kernel of a Markov chain X  having unique stationary 
distribution .�  Think, for example, of P  as the kernel of the imbedded jump chain of 

the / /1M G  queue. What would be the effect on the stationary performance of the queue 
if we introduced the breakdowns of the server in this queue? Let P�  denote the transition 
kernel of the Markov chain X�  modeling the alternative system, in our example the 

/ /1M G  queue with breakdowns, and assume that X�  has unique stationary distribution 
.��  The question about the effect of introducing the breakdowns of server on the stationary 

behavior is expressed by ,� �� �  the difference between the stationary distributions. 
Obviously, a bound on the effect of the perturbation is of great interest. The study of this 
type of bounds on perturbations has a long history. See, for example, [14] for an early 
reference. More specifically, let . �  denote the weighted supremum norm, also called 

-norm,�  where �  is some vector with elements (.) 1,� �  then the above problem can be 
phrased as follows : Can �

�
� ��  be approximated or bounded in terms of ?P P

�
� �  This 

is known as "perturbation analysis" of Markov chains in the literature. However, 
convergence w.r.t. to the -norm�  allows for only bounding the effect of introducing the 
breakdowns of server for bounded performance measures only. 

In this paper we will establish an upper bound on � �� �  in the -norm�  (to be defined 
presently). This norm is based on a weight function �  and for our analysis we assume that 
�  is of the form ( ) kk� ��  for k �	�  and some 1.� 
  The two main steps of our analysis 
are that we first establish a bound of the -norm�  of � �� �  in terms of the -norm�  of 
P P� �  (the actual perturbation) and in terms of others constants. Secondly, we determine 
the parameter �  such that the -norm�  of our bound is minimized. 

We set out to explain the applicability of the strong stability method [9] with the 
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/ /1M G  queue with breakdowns, for sufficiently small perturbation of breakdown's rate. 
For the considered systems �  and ��  are known and everything can be computed. This 
allows for evaluating the potential of this approach. The stationary distribution is generally 
obtained by using a numerical method to invert the Laplace-Stieltjes transform of the 
distribution [1]. In fact, no a precision bounds on the quality of the approximation is available. 
In this paper we follow a different train of thought, and will present an directly computable 
bound on the effect on the stationary behavior for switching from P  to P�  and thereby 
establish means to predict ��  by .�  

The paper is organized as follows. Section 2 presents the basic results of the strong 
stability method and the main tools used for our analysis. Section 3 is devoted to establishing 
the bound on the perturbation. Numerical example is presented in Section 4. A detailed 
literature review is provided in Section 5. Eventually, we will point out directions of  further 
research. 

2. Strong Stability Method 

In this section we introduce necessary notations. For the basic theorems of  the strong 
stability method are given in [9]. The main tool for our analysis is the weighted supremum 
norm, also called -norm,�  denoted by . ,�  where �  is some vector with elements 

( ) 1k� �  for all ,k �	�  and for any vector f  with infinite dimension  

0

| ( )|
sup .

( )k

f k
f

k� ��
�                              (1) 

Let �  be a probability measure on ,��  then the -norm�  of �  is defined as  

0
( )| |.j

j
j�� � �

�
� �                             (2) 

The -norm�  is extended to stochastic kernels on ��  in the following way: let P  the 
matrix with infinite dimension then 

00

1
sup ( )| |.

( ) kj
jk

P j P
k� �

� ��
� �                         (3) 

Note that -norm�  convergence to 0  implies elementwise convergence to 0.  

We associate to each transition kernel P  the linear mappings:  

0
( ) .k i ik

i
P P� �

�
� �                              (4) 

0
( )( ) ( ) .ki

i
Pf k f i P

�
� �                             (5) 

The strong stability method [2, 9] considers the problem of  the perturbation of  general 
state space Markov chains using operators' theory and with respect to a general class of  
norms. The basic idea behind the concept of  stability is that, for a strongly stable Markov 
chain, a small perturbation in the transition kernel can lead to only a small deviation of  the 
stationary distribution. 

Definition 1 A Markov chain X  with transition kernel P  and stationary distribution �  
is said to be strongly stable with respect to the norm . �  if P �  �  and every stochastic 
kernel Q  in some neighborhood { : }Q Q P � �� �  admits a unique stationary distribution 
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�  and  

0 as 0.Q P� �� �� � � �                          (6) 

In fact, as shown in [2], X  is strongly stable if and only if, there exists a positive 
constant ( )c c P�  such that  

.c Q P� �� �� � �                             (7) 

In the sequel we use the following results. 

Theorem 2  [2] The Markov chain X  with the transition kernel P  and stationary 
distribution �  is strongly stable with respect to the norm . �  if  and only if  there exists a 
probability measure ( )j� ��  and a vector ( )ih h�  on ��  such that � � �
 �0, 1,h h1  is 
a positive scalar, and 

(a) The matrix T P h�� �  is nonnegative, where ( )ij ijh a� �  such that ij i ja h��  for 
, .i j �	�  

(b) There exists 1�   such that ( ) ( )T k k� ���  for .k �	�   

(c) .P �  �  

Here 1  is the vector having all the components equal to 1.  

Theorem 3 [9] Let X  be a strongly -stable�  Markov chain that satisfies the conditions 
of  Theorem 2. If �  is the probability invariant measure of  a stochastic kernel ,Q  then for 

(1 ) / ,c� ��  �  we have the estimate  

1(1 ) ,c c� � � �� � � � �� � � � � �                   (8) 

where � ��� � � � �, 1Q P c 1  and 1( )(1 ) ( ).h�� �� � ��� �   

3. Analysis of the Model 

3.1. Model Description 

Consider an / /1M G  ( , )FIFO �  queue with server breakdowns. Denote this queue by 
.��  Customers arrive according to a Poisson process with rate �  and demand independent 

and identically distributed service times with common distribution function B  with mean 
1/ .�  We assume that when a server fails, the time required to repair it has exponential 
distribution with rate 0.r 
  

In this model, we consider the breakdowns with losses. If  an arriving customer finds the 
server idle-up (i.e. it is ready to serve), it immediately occupies the server and leaves it after 
completion service if  no breakdown had occurred during this period. Therefore, with 
probability 1 ,q q� �  the server breaks down while serving a customer, in which case the 
customer is discarded, while with probability ,q  the service is successfully completed. We 
assume that when the server fails, it is under repair and it cannot be occupied. As soon as 
the repair of the failed server is completed, the server enters an operating state and continues 
to serve the other customers. In words, the breakdown occurs at the beginning of  the service. 
Otherwise, there will be arrivals before the server is down. 

Let { , }nX X n �� 	� � �  be the Markov chain describing the state of  :��  the number of 
customers in the queue at the n th time point which is either "end" of a service or "end" of 
a repair. The transition kernel , 0( )ij i jP P ��� �  of ��  is then given by  
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�

�

� �
� �

� �
� �

� �

� �� �
� �

� � �� �� � � �� ��  �
�
� � �� � � � ��! � �� � � ��  �
�
�
�"

�

0

11

0

( )
( ) , if 0;

!

( )
( ) , if 1 1;

( 1)!

0, otherwise.

jj
x

j ij i
x

ij

x rq
q e dB x i

j r r

x rq
P q e dB x i j

j i r r
 

Consider also an / /1M G  ( , )FIFO �  queue without breakdowns. Denote this queue 
by .�  It behaves exactly as a classical / /1M G  system: Arrivals occur as a Poisson process 
of  rate � , and it has the same general service time distribution function .B  Let P  be the 
transition kernel for the corresponding Markov chain { , },nX X n �� 	�  in .�  We have:  

�

�

�

�

� �

� �
� �

�
���

�
��� � � ��!

� ��
�
�
�"

0

1

0

( )
( ), if 0;

!

( )
( ), if 1 1;

( 1)!

0, otherwise.

j
x

j i
x

ij

x
e dB x i

j

x
P e dB x i j

j i
 

3.2. � -Strong Stability Conditions 

In the following lemma we will identify the range for �  that leads to determine the 
strong -stable�  conditions of the Markov chain .X  Indeed, the main work in strong 
stability method is finding �  such that 1,T �   where T  is a stochastic kernel. For that, 
we choose the function � � � �� 
 � 0( ) , 1,k

i ik h I  and 0j jP� �  (see Theorem 2). 

Lemma 4 Suppose that the geometric ergodicity and the Cramér conditions in the system 

�  hold: 

(a) � # ( ) 1,E  where #  is the service time,  

(b) # �$ 
 �  ��00, ( ) ( )a aua e e dB uE  and 

0 sup{ : ( (1 )) },B� � � � �%� �                      (9) 

where 0( (1 )) exp[( ( 1)) ] ( ).B x dB x� � � ��% � � ��  Then, for all �  such that 01 ,� �   the 
Markov chain X  is strongly stable for the function ( ) .kk� ��

Proof We have 0 0,h� �� 
  � �11  and 0 00 0.h P� �� � 
   

0, if 0,

, if 1.ij ij i j
ij

i
T P h

P i
�

��
� � � ! �"

                    (10) 

Hence, the kernel T  is nonnegative. 

According to Equation (5), we have:   

0
( ) .j

ij
j

T i T� �
�

� �                               (11) 
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(a) If 0,i �  then   

 0
0

(0) 0.j
j

j
T T� �

�
� ��                            (12) 

(b) If 1,i �  then   

1
0

0 0

( )
( ) ( )

!

j
j j i x

ij
j j

x
T i P e dB x

j
� �� � � �� � �

� �
� �� � �                  (13) 

1
0

0

( )
( )

!

j
i x

j

x
e dB x

j
� ��� �� �

�
� ��                          (14) 

( (1 ))
.i B � ��

�

% �
�                                   (15) 

We pose  

( (1 ))
( ) .

B � �� �
�

% �
�                           (16) 

From the convexity and the monotony of ( ),� �  we have ( ) 1,� �   and obtain  

� �� �� & 	( ) ( ), .T i i i Z                         (17) 

We verify that .P �  �  We have:   

,T P h P T h P T h� � � �� � �� � ' � � ' � �              (18) 

or, according to equation (3),  

� � �� �
� ��� �

� � � �
00 0

1 1
sup ( )| | sup ( ) 1.

( ) ( )ij
ji i

T j T i
i i

             (19) 

According to Equations (1) and (2), we have:  

0

1
sup | | 1,

( ) i
i

h h
i� ��

� �                         (20) 

and  

0
0 0

( )| | j
j j

j j
j P�� � � �

� �
� �� �                      (21) 

          0
0

( )
( )

!

j
j x

j

x
e dB x

j
� �� � �

�
� � �  

0( (1 )) .B � � � �%� �    �                   (22) 

Then, P �  � . 

The Markov chain X  being strongly stable then, the �� �� �  can be bounded in terms 
of .P P

�
� �  
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3.3. Bound on Perturbation 

To be able to estimate numerically the margin between the stationary distributions of  
the Markov chains  and  we estimate the norm of  the deviation of  the transition 
kernel  

X� ,X
.P

2
0 0| |( ) and | |( ) / ,x B E dx x B E dx W

Suppose that the mean value of  the distribution of  service times verifies the following 
inequality  

�� ��  � � � �                 (23) 

where E  is the repair time distribution and  

0( , ) | |( ).W W B E B E dx�� � ��

1

                      (24) 

�Then, there exists 


( 1)
0 | |( ) .xe B E dx W� � �� � � �

P� )P X�
).X

 such that (see [4])  

                      (25) 

Lemma 5 Let  (respectively  be the transition kernel of the Markov chain  
(respectively of the Markov chain  Then, for all �  such that 01 , � �  we have:  

�
�� ��

0 ,P P q W

0

                          (26) 

�  and  were already defined in (9) and (24) respectively. where W

Proof From Equation (3), we have:  

0

1
|j

kj kjk
jk

P P P P
�

�
� ��

� � ��� �

�

0
sup |,                   (27) 

(a) For    0 :k

�
�

�
� � ���

0
0

|j
j j

j
P P P�0|P                      (28) 

� � ��

�
� ���

0

( )
| |( )

!

j
x

j

x
q e B E dx

j
          (29) 

( 1) | |( ).xq e B E dx� � �� ��            

k �

     (30) 

(b) For    1:

01

1
sup |kjk

jk
q P P�

� ��
��� �|j

kjP P
�

� �                      (31) 

0

1 (
|

j
x

j

x
q e B E dx� ��

�
�

�
� ���

)
| ( )

!j
               (32) 

( 1 ).xq
E dx� �

�
� �� ) | |(e B�                       (33)  

Then, we have:  
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( 1) | |( ).xq
P P e B E dx� �

� �
�� � ���                         (34) 

From Equation (25), we have :  

0 .P P q W
�

�� �                               (35) 

We summarize our analysis in the following result. 

Theorem 6 Let ��  (respectively )�  be the stationary distribution of  the Markov chain in 

��  (respectively of  the Markov chain in ),�  then for all 01 ,� �   we have :  

1
0 0 0(1 ) ,q Wc c cq W�� � � � � �� � � ��                      (36) 

where 0c  and c  are given respectively by  

0
(1 )( 1)

1
m

c
� � �

�
� �

�
�

                           (37) 

and # �� �( ) 1/m E  (#  is the service time),  

1 .c ��� �                               (38) 

Proof By definition,  

0 0
( ) ( ).j

j j
j j

j�� � � � � �
� �

� � � (� �                     (39) 

This is the Pollaczek-Khinchin generating function for .B  Hence,  

0

( 1)(1 ) ( (1 ))
( )

( (1 ))

( 1)(1 )

,

m B
B

m

c

� � � ��
� � �

� � ��
� ��

%

%

� � �
( �

� �
� �

�
�

�

 

where 0 [(1 )( 1) / (1 )] .c m� � � �� � � �  

Let us  
1 ,c � ��� � 1                          (40) 

where  

0

1
sup 1.

k
k

� ��
� �1                             (41) 

Then  

1 .c ��� �                              (42) 
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4. Numerical Example 

In this section we will apply our bound put forward in Theorem 6. 

4.1. Approximation Algorithm of  the /M G 1  System with Breakdowns 

In this subsection we elaborate an algorithm STRO-STAB-BREAK which allows us 
to get the domain of the approximation of ��  by �  and to determine the error on the 
stationary distribution due to the approximation. 

Algorithm STRO-STAB-BREAK 

STEP 1. Definition of  the inputs : 

� The service density function ( );b x  

� The arrival mean rate ;�  

� The repair mean rate ;r  

� The probability for that the customer does not leave the system ;q  

� The precision error ;�  

STEP 2. Determination of  the service mean rate :   

0

1
;

( )ub u du
� �)

�
                              (43) 

STEP 3. Verification of  the stability : 

if / 1� � �  then %�  the system is unstable %�  go to STEP 7; 

else put :  

( ( 1))
0( (1 )) ( ),uB B e dB u� �� � �% % �) � ) �                   (44) 

go to STEP 4; 

STEP 4. � � � �%)  0 max ( :1 and / 1);B    

STEP 5. � � � � � ��)  � �  �1
min 0 0 0min ( :1 and (1 ) ( ) );cq W q Wc c    

STEP 6. � � � � � ��)  � �  �1
max 0 0 0max ( :1 and (1 ) ( ) );cq W q Wc c    

STEP 7. end. 

4.2. Numerical Validation 

The primary objective of this subsection is to compare our expected approximation error 
against results obtained from simulations. For this, we implement the algorithm and 
simulator on a concrete case. Indeed, we apply the STRO-STAB-BREAK algorithm to 
determine the made error (on stationary distribution) due to the approximation (when the 
approximation is possible) as well as the norm from which the error is obtained. This norm 
will be introduced into the simulator to simulate an error (on stationary distribution) with 
respect to the same norm. 

For the simulation of  the error, we used the discrete events approach and elaborated 
the program in the Matlab environment according to the following steps : 
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(1) Simulate the stationary distribution ( , 0)i i� �� �� �  of ;��  

(2) Simulate the stationary distribution ( , 0)i i� �� �  of ;�  

(3) Calculate 
0

| |.i
i i

i
� � �

�
� � �  

In order to appreciate the performance of  this approach, we supposed that the service 
times of the considered models, ��  and ,�  are distributed according to the exponential law 
with parameter 0.6.� �  The arrival mean rate 0.2� �  and the repair mean rate 0.4.r �  
The density function of  the service time is given by: ( ) , 0.xb x e x�� �� 
  

We interest to know if the / /1M M  model with breakdowns ( )��  can be approximated 
by the / /1M M  model ( )�  and to determine the made error, in the case when the 
approximation is validated. 

� Verification of  the stability condition : / 0.2 / 0.6 0.3333 1.� � � �   

� We fix a value from the approximation domain : 1.5� �  min max( [ , ]).� �	  

� We fix the simulation time max 1000t �  units of  time. 

� We fix the precision 0.001.� �  

Introduce this value ( 1.5)� �  in the simulator. The obtained results for different values 
of q  are presented in Table 1. From these numerical results, it is easy to see that, the error 
decreases as the probability q  increases ( 1).q �  Besides, the values of the both errors 
(algorithmic and numeric) tend to coincide in the neighborhood of lower bound ( 1).q �  

This can be explain by the way that it represents the frontier (critical value) of the stability 
domain. Indeed, it is completely logical that the / /1M M  queueing system with 
breakdowns is close to the classical / /1M M  system with the same arrival flux and 
distribution of service time when the breakdown rate tends to zero (or 1).q �  Nevertheless, 
we can notice the remarkable sensitivity of the strong stability method in the variation of 
the rate of breakdowns with regard to the simulation. The bound obtained by the method 
of strong stability is much smaller than that obtained by the simulation when the rate of 
breakdowns tends to zero. This means that the numerical error is really the point of the 
error which we can do when switching from ��  to � . 

Table 1. Errors comparative table. 

q  �0  �min  �max  Algorithmic error Simulated error 

0.9200 8.3301 1.0400 6.8201 4.0791 0.7473 
0.9250 8.3301 1.0400 6.8901 3.1763 0.4874 
0.9300 8.3301 1.0300 6.9601 2.5351 0.6331 
0.9350 8.3301 1.0300 7.0301 2.0562 0.4819 
0.9400 8.3301 1.0300 7.1101 1.6848 0.3647 
0.9450 8.3301 1.0300 7.1801 1.3885 0.5132 
0.9500 8.3301 1.0300 7.2501 1.1465 0.4378 
0.9550 8.3301 1.0200 7.3301 0.9451 0.3117 
0.9600 8.3301 1.0200 7.4001 0.7750 0.2631 
0.9650 8.3301 1.0200 7.4801 0.6294 0.2849 
0.9700 8.3301 1.0200 7.5601 0.5033 0.1599 
0.9750 8.3301 1.0200 7.6501 0.3930 0.2319 
0.9800 8.3301 1.0100 7.7401 0.2958 0.1673 
0.9850 8.3301 1.0100 7.8301 0.2095 0.1752 
0.9900 8.3301 1.0100 7.9401 0.1323 0.1223 
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5. Literature Review 

There exists numerous results on perturbation bounds of Markov chains. General results 
are summarized by Heidergott and Hordijk [6]. One group of  results concerns the sensitivity 
of  the stationary distribution of  a finite, homogeneous Markov chain (see Heidergott et al. 
[8]), and the bounds are derived using methods of  matrix analysis; see the review of  Cho 
and Meyer [5] and recent papers of  Kirkland [10], and Neumann and Xu [12]. Another 
group includes perturbation bounds for finite-time and invariant distributions of  Markov 
chains with general state space; see Anisimov [3], Rachev [13], Aïssani and Kartashov [2], 
Kartashov [9], Mitrophanov [11]. In these works, the bounds for general Markov chains are 
expressed in terms of ergodicity coefficients of the iterated transition kernel, which are 
difficult to compute for infinite state spaces. These results were obtained using 
operator-theoretic and probabilistic methods. 

6. Further Research 

An alternative method for computing bounds on perturbations of  Markov chains is the 
series expansion approach to Markov chains (SEMC). The general approach of  SEMC has 
been introduced in [6]. SEMC for discrete time finite Markov chains is discussed in [8], and 
SEMC for continuous time Markov chains is developed in [7]. The key feature of  SEMC is 
that a bound for the precision of  the approximation can be given. Unfortunately, SEMC 
requires (numerical) computation of the deviation matrix, which limits the approach in 
essence to Markov chains with finite state space. Perturbation analysis via the SEMC 
approach overcomes this drawback, however, in contrast to SEMC, no measure on the 
quality of  the approximation can be given. 
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